

Manuherikia Catchment Study: Stage 1 (Land)

Prepared for the Manuherikia Catchment Water Strategy Group

Report C12040/1

March 2012

Disclaimer:

This report has been prepared solely for the benefit of the Manuherikia Catchment Water Strategy Group (MCWSG). No liability is accepted by Aqualinc Research Ltd or any employee or sub-consultant of this Company with respect to its use by any other person.

This disclaimer shall apply notwithstanding that the report may be made available to other persons for an application for permission or approval or to fulfil a legal requirement.

Quality Control				
Client:	Manuherikia Catchment Water Strategy Group			
Report reference:	Title: Manuherikia Catchment Study: Stage 1 (Land) No: 1			No: 1
Prepared by:	Peter Brown			
Reviewed by:	Ian McIndoe	Approved for issue by:	Ian McIndoe	
Date issued:	February 2012	Project No:	C12040	

Docum	Document History				
Version:	1	Status:	Discussion document	Author: PB	Reviewer: IM
Date:	12-12-11	Doc ID:	Manuherikia discussion document	Typist:	Approver: IM
Version:	1.1	Status:	Draft, for clients approval	Author: PB	Reviewer: IM
Date:	2-02-12	Doc ID:	Manuherikia Stage 1 DRAFT	Typist:	Approver: IM
Version:	1.2	Status:	Final draft	Author: PB/IM	Reviewer: IM
Date:	20-02-12	Doc ID:	12-02-20 Manuherikia Stage 1 final	Typist:	Approver: IM
Version:	1.3	Status:	Final	Author: IM	Reviewer: IM
Date:	05-03-12	Doc ID:	12-03-05 Manuherikia Stage 1 final	Typist:	Approver: IM
Version:	1.4	Status:	Final (minor corrections)	Author: PB	Reviewer: IM
Date:	06-11-12	Doc ID:	12-11-06 Manuherikia Stage 1 final	Typist:	Approver: IM

© All rights reserved. This publication may not be reproduced or copied in any form, without the permission of the Client. Such permission is to be given only in accordance with the terms of the Client's contract with Aqualinc Research Ltd. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system.

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Project area	1
	1.3	Stage 1 general methodology	1
2	РОТ	TENTIAL IRRIGABLE AREA	2
_	2.1	Climate	
		2.1.1 Rainfall	
		2.1.2 Evapotranspiration	
	2.2	Soils	б
	2.3	Slope	б
	2.4	Elevation	б
	2.5	Topography	б
	2.6	Potential irrigable area	7
3	IRR	IGATION DEMAND MODELLING	7
5	3.1	Overview	
	3.2	Crops	
	3.3	Climate	
	3.4	Soils	
	3.5	Irrigation efficiency classes	
	3.6	Irrigation system assumptions	
		3.6.1 Irrigation system capacity	
		3.6.2 Application depths and return intervals	
		3.6.3 Water supply restrictions	
4	RES	ULTS	3
-	4.1	Irrigation demand	
	4.2	Production estimates	
5	REF	ERENCES10	6

List of Appendices:

Appendix A:	Climate
Appendix B:	Land slope
Appendix C:	Soils
Appendix D:	Irrigable land
Appendix E:	Existing land cover

List of Tables:

Table 1: Evapotranspiration by location	4
Table 2: Rainfall classes	8
Table 3: Soil PAW classes	9
Table 4: Irrigation efficiency classes	10
Table 5: Irrigation management parameters – 80% efficient	11
Table 6: Irrigation management parameters – 60% efficient	12
Table 7: Irrigation management parameters – 40% efficient	12
Table 8: Estimated average annual irrigation demand (mm/y)	13
Table 9: Estimated 1 in 10 year irrigation demand (mm/y)	14
Table 10: Estimated average annual production (% of maximum potential)	15

List of Figures:

Figure 1: Seasonal rainfall trends at Blackstone Hill and Alexandra	3
Figure 2: Long term rainfall trends at Blackstone Hill and Alexandra	3
Figure 3: Seasonal ET _o trends at Lauder	5
Figure 4: Seasonal temperature trends at Lauder	5

1 INTRODUCTION

1.1 Background

The Manuherikia River system in Central Otago is a unique catchment in terms of climate, topography and water management history. The catchment is semi-arid, with a continental type of climate with larger seasonal temperature variations than is common elsewhere in New Zealand.

The community's long-term goal is realise the potential growth within the region. The potential growth in the catchment is closely linked to water. It is generally believed that the growth potential is constrained by water availability for irrigation.

The Manuherikia Catchment Water Strategy Group (MCWSG) was set up to develop and oversee the implementation of a water strategy for the catchment. The MCWSG has proposed that a project be undertaken in three sections to:

- (i) Define the potential irrigation demand in the Manuherikia River catchment (land),
- (ii) Provide an initial assessment of the water availability for meeting this demand (hydrology), and
- (iii) Options to close the gap between supply and demand (options).

The project has been broken into two parts, Part A (Sections (i), (ii) and (iii a)) and Part B (Section (iii b)). Part A provides the initial big-picture information to understand the overall water resources in the catchment. Part B looks in more detail at specific options to progress water resources development. The MCWSG envisages that the project will provide information to help the community make informed decisions, leading to a comprehensive Manuherikia catchment water strategy.

Aqualinc has been contracted to complete Part A of the project. This report summarises the findings for Section (i), and describes the climate, soils, potential irrigable areas and irrigation water requirements of the Manuherikia catchment.

1.2 Project area

The study area includes the Manuherikia catchment, and the Waikerikeri catchment to Dairy Creek, since for some of the potential development options there is an overlap between the lower reaches of the Manuherikia catchment and the Waikerikeri catchment.

1.3 Stage 1 general methodology

Irrigable land in the Manuherikia catchment has been defined using GIS analysis and mapping. This standard procedure allowed constraints such as altitude, climate, soil type and topography (slope) to be imposed. Maps of the potential irrigable land have been prepared and are included in this report.

The GIS information is available to link this section of the project to subsequent stages of the project.

2 POTENTIAL IRRIGABLE AREA

Land that is suitable for irrigation has been defined based on climate, slope, aspect and elevation, using topographic information and the slope classifications in the NZ Land Resources Inventory GIS layer, as described below.

We have completed this analysis at a catchment scale to determine potential area and from that, potential irrigation demand as a whole. Although we expect that the defined irrigable areas generally include current irrigation areas, they will not necessarily be identical at an individual farm scale. Small variations in areas are not a concern since at this stage we are interested in overall catchment irrigated areas and water demands, not farm specific water requirements.

2.1 Climate

2.1.1 Rainfall

There are over 20 historical rainfall stations of varying record length in the study area. Some records extend back as far as the 1880's and 1890's.

Mean annual rainfall for the Manuherikia catchment is about 630 mm/y. Rainfall is higher at the north-eastern end of the catchment, with the Hawkdun Range receiving up to 1,200 mm/y. At the other end of the catchment, Alexandra only receives 350 mm/y on average. The typical rainfall range for irrigable areas is about 350 - 800 mm/y (refer to Appendix A).

Figure 1 illustrates the seasonal rainfall trends at Blackstone Hill, at the north-eastern end of the catchment, and Alexandra in the south-western end of the catchment. This figure illustrates that summer rainfall is greater than winter rainfall.

Figure 2 illustrates long-term rainfall trends. In general terms, the catchment seems to have been slightly drier during the mid-1940's to 1970's, and slightly wetter during the 1980's and 1990's. However, long term trends are not always consistent across the catchment. For example, significantly above-average rainfall was recorded at Blackstone Hill in the 1920's and 1930's; a trend not seen at Alexandra.

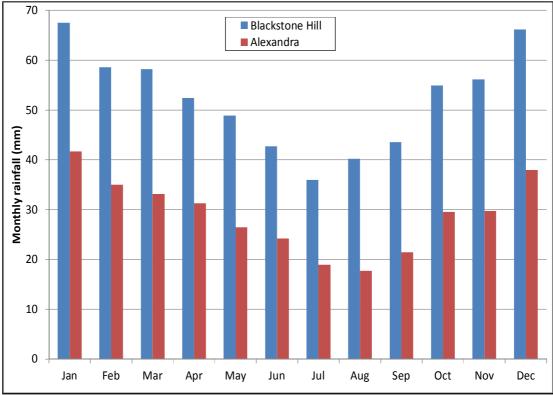


Figure 1: Seasonal rainfall trends at Blackstone Hill and Alexandra

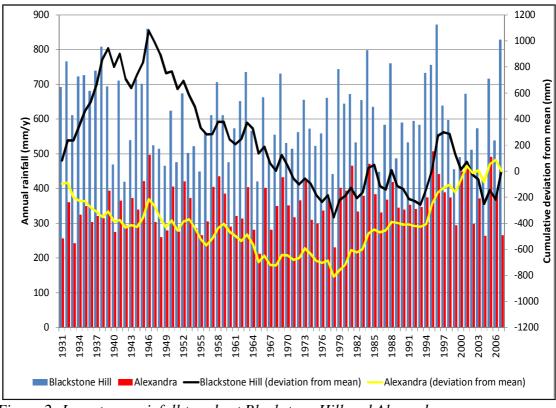


Figure 2: Long term rainfall trends at Blackstone Hill and Alexandra

2.1.2 Evapotranspiration

Evapotranspiration is the total water lost through evaporation and transpiration from the soil and vegetative cover. NIWA's estimate of reference evapotranspiration (ET_o), calculated by the Penman equations using radiation, temperature, wind and vapour pressure data has been used for this study. ET_o estimates for climate stations within or in the vicinity of the study area are summarised in Table 1.

Location	Station ID	Distance from	Mean annual	
		centre of study	ETo	
		area (km)	$(mm/y)^{(1)}$	
Lauder	5535	0	950	
Alexandra	36592	33	750	
Ranfurly	18593	34	870	
Clyde	12431	35	800	
Tara Hills (near Omarama)	5212	59	940	
Average 860				
(1) Records were extended to cover the full period from June 1972 to May 2011				
using Aqualinc's climate extension software.				

Table 1: Evapotranspiration by location

From the climate station data, we estimate mean annual ET_o probably ranges from about 750 – 950 mm/y within the study area. Areas exposed to greater wind-run (such as Thompson's Gorge) will have higher evapotranspiration (ET), while sheltered or shaded areas will have lower ET. However, because of the lack of wind and radiation data in many areas, it is generally not possible to reliably map the areas of higher and lower ET within the study area.

Because of this lack of data we have subsequently assumed Lauder ET_o estimates are representative of the study area. It appears from the data that Lauder has the highest mean annual ET in the catchment. The consequences of using Lauder ET for all areas is that modelled irrigation demand may be overestimated in some areas, particularly locations such as Alexandra, that appear to have lower ET.

Seasonal variations in ET_o and temperature are illustrated in Figure 3 and Figure 4. Low temperatures over winter, early spring and late autumn limit the growing season.

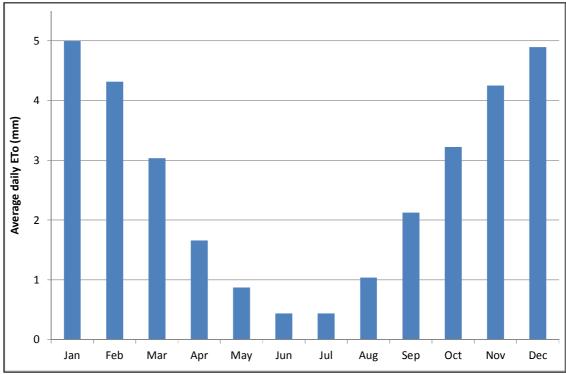


Figure 3: Seasonal ET_o trends at Lauder

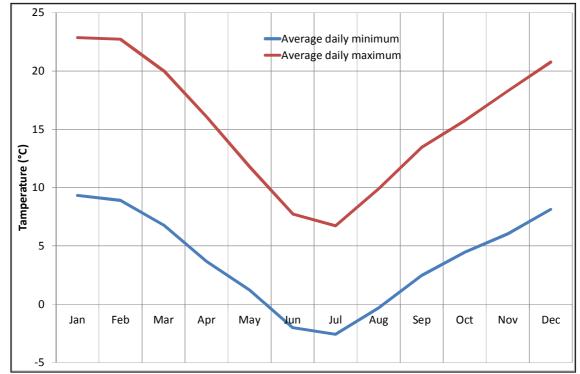


Figure 4: Seasonal temperature trends at Lauder

2.2 Soils

There are a range of soils across the catchment. In this study, we used soil profile available water estimates from the New Zealand Fundamental Soils Layer (Landcare 2000). Soils information is included in Appendix C.

Both GrowOtago and the Fundamental Soils Layer estimates of profile available water are identical for the study area. We understand that details on soils available from DSIR soil mapping undertaken during 60/70's have been incorporated into the Landcare database.

2.3 Slope

In New Zealand most pasture, horticulture and arable irrigation occurs on flat to undulating land ($\leq 7^{\circ}$). However, recent developments in irrigation technology means irrigation of rolling land (up to 15°) is becoming more common.

In Central Otago, irrigation of rolling country on slopes of up to 20° has been and continues to be carried out, particularly using contour irrigation. In other locations in New Zealand such as North Otago, there are also isolated incidences of slopes up to 20° being irrigated with centre-pivots.

For the purposes of broadly defining potential new areas of irrigation, we have assumed that the majority of any future irrigation will not occur on land slopes over 15°. Steep lands may not be suitable for installation of some irrigation system types and at times, steep slopes can be susceptible to run-off.

We acknowledge that some steep land that is unsuitable for pasture may be suitable for viticulture or horticultural development, where solid-set or drip systems can be installed. We also acknowledge that other steeper areas may be irrigated, but these areas have not been specifically defined at this stage. We have assumed any land suitable for pasture will also be suitable for grapes.

Land slope is illustrated in Appendix B. The maps show slope divided into three classes; flat $(0 - 3^{\circ})$, undulating $(4^{\circ} - 7^{\circ})$, and rolling $(8^{\circ} - 15^{\circ})$. We will consider more detailed contours, e.g. MWD contour maps when looking at specific system development options.

2.4 Elevation

We assumed that irrigation will not occur on land higher than 600 m, because of the short growing season at elevations above 600 m. That doesn't preclude small areas above 600 m from being irrigated if it is practical to do so.

2.5 Topography

Most existing irrigation is on flat to undulating land. The benefits of irrigating new rolling land could be marginal because irrigation of rolling land is generally more labour intensive and expensive to irrigate than flat and undulating land. Generally both on and

Prepared for the Manuherikia Catchment Water Strategy Group (Report C12040/1, March 2012)

off farm pumping and capital costs are higher. Irrigation water use efficiency is also generally lower than the equivalent spray system on flat and undulating land.

2.6 Potential irrigable area

In total, 63,000 ha of flat to undulating irrigable land and 16,000 ha of rolling irrigable land was identified within the study area as having potential to be irrigated. A map of the potential irrigable area is provided in Appendix D.

Areas that clearly cannot be irrigated such as Alexandra township have been excluded from the total. However, no account has been taken of smaller areas such as buildings, roads, farm tracks, streams, ponds and trees. The areas stated above therefore, are gross areas and will need to be discounted to determine effective irrigation areas. Normally a figure of 80% or 85% of gross area is used at a scheme or catchment level. At an individual farm level, potential irrigable areas tend to vary widely and may range from 50% up to nearly 100%.

Our assessment of the area that is likely to be irrigable within the study area will be in the order of 60,000 hectares. This is the figure that we have used as a basis of demand estimates for whole-of-catchment assessments.

While there may be some areas currently irrigated that are outside the boundary of irrigable land shown in Appendix D, we expect the areas involved will be small relative to the total potential irrigable area.

We note that the OPUS Lower Manuherikia Valley study (OPUS 2010) identified similar irrigable areas. We will use the results of the OPUS study specifically in the next sections of the study.

3 IRRIGATION DEMAND MODELLING

3.1 Overview

Irrigation water demand depends primarily on climate, soil, crop type, irrigation system type and the dgree of risk taken in not meeting full demand. We modelled irrigation demand, deep drainage, and pasture growth for three soils types, four climate types and three irrigation system types. We also modelled dryland pasture growth and drainage. In total, we modelled 48 different climate, soil and irrigation system combinations.

Irrigation and soil water dynamics were modelled using AusFarm, coupled with Aqualinc's custom irrigation component. AusFarm is a biophysical model of temperate climate pastoral systems, developed by CSIRO Australia. This model is widely used in Australia and internationally by farm advisors and researchers. For further information about AusFarm see <u>http://www.grazplan.csiro.au/</u>. Aqualinc has developed a custom irrigation component for AusFarm, which models various aspects of irrigation systems including how irrigators move around a series of paddocks in a rotation, restrictions, seasonal limits, and on-farm storage ponds.

We used a daily time step and simulated the period 1 June 1972 to 31 May 2011, i.e. 39 years of historical data.

3.2 Crops

Pasture was the crop modelled at this stage since currently about 95% of the irrigable land is in pasture (refer to Appendix E). Currently cropping, horticulture and viticulture cumulatively account for less than 2% of the irrigable area.

We understand that the area of crop and horticulture may increase in the future, but with respect to water demand, pasture demand will exceed that required for crops and horticulture. Therefore, assuming 100% pasture is a conservative approach.

3.3 Climate

We used four rainfall stations to represent the spatial rainfall variability across the irrigable area (refer to Table 2 and Appendix A). We assumed ET_o would be relatively constant across the irrigable area, with ET_o data from Lauder used for all modelling runs.

Class	Mean annual	Representative rainfall station used in modelling		
	Rainfall range (mm/y)	Name	Mean annual rainfall (mm/y) ⁽¹⁾	
1	350-450	Clyde EWS (12431)	400	
2	450-550	Lauder Flat (5537)	510	
3	550-650	Blackstone Hill (5252)	610	
4	650-850	Cambrians (5248)	750	
(1) M	(1) Mean annual rainfall for the period 1972 - 2010			

3.4 Soils

We used three soil classes to represent the range of potentially irrigable soils, as described in Table 3 and shown on a map in Appendix C. The Fundamental Soils Layer estimates profile available water for the top 90 cm of soil. Profile available water is a function of the soil type only. In contrast, plant available water (PAW or soil water holding capacity) depends on both the soil type and crop rooting depth. We calculated the PAW for irrigated pasture by assuming a 60 cm rooting depth and using the rule of thumb proposed by Trevor Webb of Landcare for North Otago (Brown and McIndoe, 2003):

"Assume the top 200 mm of topsoil contributes 40 mm of water, and the remainder of the soil profile down to a maximum of 900 mm contributes a constant amount of water per unit depth. In stony soils, where the majority of the available water is within the top 500 mm of soil, no adjustment of PAW should be made."

Class	Profile avai	Plant available water	
	Range (mm)	Class mid-point (mm)	(PAW) used in modelling
1	30-89	70	60
2	90-139	115	90
3	≥140	160	120

We assumed a 60 cm rooting depth for irrigated pasture because, while the majority of roots will be in the top 30 cm, survival roots in modern ryegrass cultivars generally extend down to 60 cm. This assumption is consistent with similar studies in other parts of New Zealand.

In fully irrigated situations, rooting depth is less critical, as plants preferentially take water from the top layers. However, if plants come under water stress and are forced to take water from greater depths, rooting depth is important. In working out potential irrigation demand for this study, we have assumed that crops are well-watered.

3.5 Irrigation efficiency classes

We need to make some assumptions about what levels of efficiency would be suitable for determining current irrigation demand and more importantly, future irrigation demand.

On-farm irrigation efficiency can be broadly considered as a measure of the efficiency of water application combined with the amount of production achieved with a given quantity of water.

Application efficiency (Ea) is defined as follows:

Ea = 100 (Wc / Wf)

Where

Wc	=	Water available for use by the crop
Wf	=	Water delivered to field

We know that on individual properties actual application efficiency can vary widely and that many factors come in to the decision about what are the appropriate values to assume.

We know that it is unrealistic to assume 100% application efficiency. We also know that 80% is the value now being used to allocate water by regional councils and for allocation within some irrigation schemes. On that basis, we modelled three irrigation efficiency levels: high, average, and low, as described in to Table 4.

Table 4: Irrigation efficiency classes

Efficiency Class	Application efficiency
High	80%
Average	60%
Low	40%

These application efficiency classes are based broadly on results of irrigation efficiency research and irrigation system evaluations throughout NZ. The figures take into account many factors such as irrigation method, effects of wind, topography, standard of design and operation, sprinkler selection and operating pressures.

We have incorporated production measures into the irrigation demand estimates as described in Section 4.2.

3.6 Irrigation system assumptions

Parameter combinations used in modelling are given in Table 5, Table 6 and Table 7.

It is important to note that at this stage of the project, the purpose of the modelling was to estimate potential irrigation demand, expressed in mm/year, for a range of soil and irrigation parameters based on daily historical climate data. The intention is that the combinations should cover the variations in demand needed for current irrigation systems and likely to be needed for future irrigation systems.

In subsequent stages of the project, we will need to associate irrigation areas with each representative combination listed in Table 5, Table 6 and Table 7. At this stage, we are not making any decisions about what irrigation system types will be used in the future. What we can say is that irrigation will ultimately move towards more efficient and more productive systems.

3.6.1 Irrigation system capacity

Except for very high-value crops, it is not economic to design and install irrigation systems to fully meet crop water demand on the very highest demand days as, if that is done, irrigation system capacity can be unrealistically high, resulting in high on-farm flow rates and very costly systems. Usually, a small loss of production is allowed for in extreme periods.

To determine peak water requirements, our modelling has assumed that an average annual loss of pasture yield of 1-2% compared to potential yield is allowed on well-watered crops using irrigation systems with an application efficiency of 80% and a 100% reliable water supply. This has resulted in irrigation system capacities ranging between 3.5 and 5.0 mm/d, depending on application efficiency and soil plant available water.

3.6.2 Application depths and return intervals

Application depths and return intervals (rotation times) have been determined from the allowable soil moisture deficits and the system capacity for each soil/ efficiency combination.

Generally, soil moisture is not returned to full on the more efficient systems, allowing better use of rainfall, should it occur. On the less efficient systems, soil moisture is returned to full, with some drainage occurring below the root zone of the plants. This can be seen in Table 7 in particular, where soil moisture deficits range between 25 and 40 mm, while application depths range between 98 and 112 mm.

We accept that on schemes and on individual farms, application depths and return intervals will differ from those assumed, particularly on the lower efficiency options. In our experience, it is the combination of application depths, return intervals and trigger levels that impacts most on overall water use and production as it affects application efficiency. We have set the parameters to achieve low, medium and high efficiency.

In situations of water shortage (soil moisture falling below the trigger level during periods of highest water demand), we assumed that farmers would continue to spread the water around, tolerating some production loss under irrigation, to maximise total on-farm pasture production.

3.6.3 Water supply restrictions

The modelling does not allow for off-farm restrictions in water supply. We recognise that there is an advantage in having higher capacity irrigation systems to allow more rapid "catch-up" where restrictions occur. However, our approach at this stage is to put that aside and focus on what is needed under reliable supply conditions.

Parameter	Soil plant available water at field capacity								
	60 mm	90 mm	120 mm						
Application depth (mm)	22.5	24	24.5						
System capacity (mm/d)	4.5*	4.0*	3.5*						
Return period (days)	5	6	7						
Soil moisture trigger (mm) ¹	25	35	45						
Application efficiency		80%							
Irrigation season]	15 Sep – 30 Ap	or						
*For Clyde rainfall, the irrigation system capacity was 0.5mm/d greater, to counter the lack of rainfall.									

Table 5: Irrigation management parameters – 80% efficient

¹ Soil moisture deficit at time of irrigation

Parameter	Soil plant available water at field capaci						
	60 mm	90 mm	120 mm				
Application depth (mm)	35	63	56				
System capacity (mm/d)	5.0	4.5	4.0				
Return period (days)	7	7 14					
Soil moisture trigger (mm) ¹	25	40	50				
Application efficiency		60%					
Irrigation season		15 Sep – 30 Ap	r				

Table 6: Irrigation management parameters – 60% efficient

Table 7: Irrigation management parameters – 40% efficient

Parameter	Soil plant available water at field capacity						
	60 mm	90 mm	120 mm				
Application depth (mm)	112	112	98				
System capacity (mm/d)	4.0 4.0		3.5				
Return period (days)	28	28	28				
Soil moisture trigger (mm) ¹	25	30	40				
Application efficiency		40%					
Irrigation season		15 Sep – 30 Ap	or				

4 **RESULTS**

4.1 Irrigation demand

Annual average irrigation demand estimates are summarised in Table 8.

Irrigation	Soil PAW	Rainfall							
application efficiency		Clyde	Lauder Flat	Blackstone Hill	Cambrians				
80%	60	680	580	540	490				
80%	90	640	530	500	450				
80%	120	600	490	450	400				
60%	60	790	690	650	600				
60%	90	740	650	600	550				
60%	120	680	590	530	470				
40%	60	870	820	780	760				
40%	90	840	770	810	730				
40%	120	740	680	640	590				

Table 8: Estimated average annual irrigation demand (mm/y)

The results show that average annual irrigation demand in the catchment will range from 350 mm/y to more than 800 mm/y, depending on location (location affects rainfall), soil plant available water and irrigation application efficiency.

As expected, irrigation demand decreases with increased rainfall (compare Clyde with Cambrians), but increases with decreasing irrigation application efficiency.

Irrigation demand will vary year-by-year, depending on rainfall and ET. For example, at Clyde on a 90 mm soil and for 80% application efficiency, irrigation demand could range from 260 mm to 730 mm in any year, with a median demand of 600 mm, compared to an average demand of 580 mm. Based on historical data, 1993 appears to consistently be a year of very low demand, while high demand has occurred in years such as 1977, 2001, 2009.

Annual allocation limits for irrigation are normally made on a 1 in 10 year basis (sometimes called a 1 in 10 year drought). 1 in 10 year irrigation demands are presented in Table 9. These will be relevant if a decision is made to limit the takes to this much water in any year.

Some organisations have allocated or restricted irrigation seasonal use to what is required in a 1:5 year event. However, that exposes production to greater variability

and is now not generally supported. It is unlikely that maximum irrigation demand will ever be supplied.

Irrigation	Soil PAW	Rainfall							
application efficiency		Clyde	Lauder Flat	Blackstone Hill	Cambrians				
80%	60	840	720	660	620				
80%	90	810	690	660	600				
80%	120	780	660	620	540				
60%	60	910	870	830	750				
60%	90	880	820	790	700				
60%	120	820	720	710	640				
40%	60	910	900	890	890				
40%	90	910	900	890	880				
40%	120	800	790	760	690				

Table 9: Estimated 1 in 10 year irrigation demand (mm/y)

Water demand estimates are for 'representative' irrigation systems. In practice, actual on-farm irrigation system demand, management and water requirements will differ from farm to farm. Some farms may use more water, while some may use less. Variations from farm to farm are not an issue of concern at this stage, because the primary focus of this part of the study is on defining irrigation demand on a unit area basis.

4.2 Production estimates

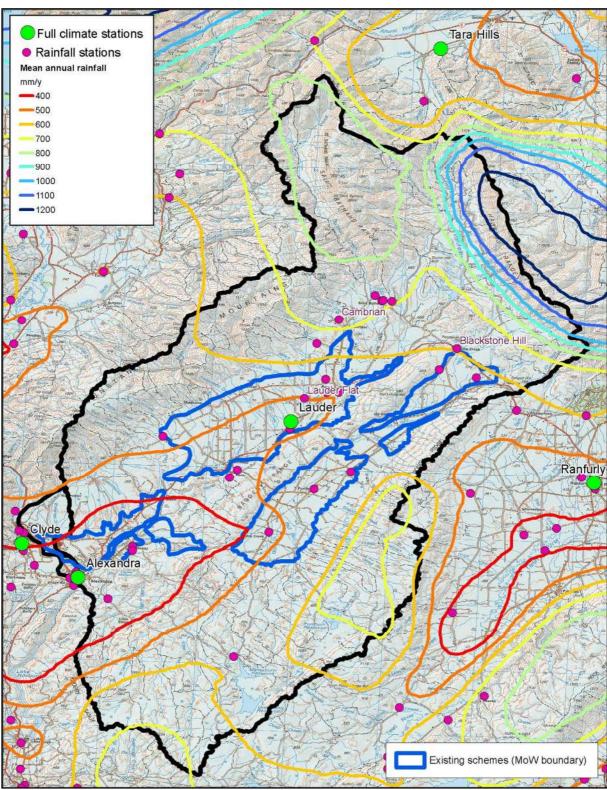
Production estimates arising from the irrigation demand figures in Table 8 are summarised in Table 10.

Irrigation	Soil PAW	Rainfall							
application efficiency		Clyde	Lauder Flat	Blackstone Hill	Cambrians				
	60	99%	99%	99%	99%				
80%	90	99%	99%	99%	99%				
	120	99%	99%	99%	99%				
	60	96%	97%	97%	98%				
60%	90	95%	97%	97%	98%				
	120	95%	98%	98%	98%				
	60	72%	80%	83%	85%				
40%	90	80%	89%	88%	92%				
	120	81%	89%	91%	94%				

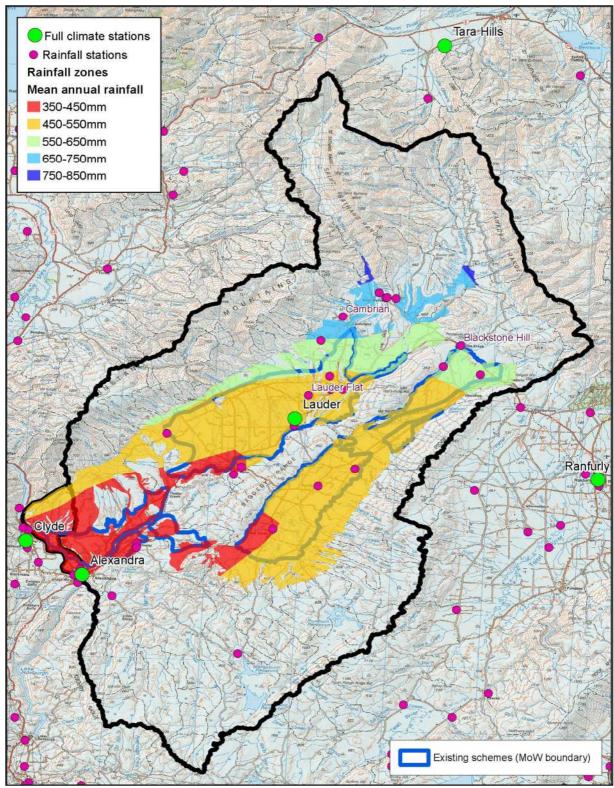
Table 10: Estimated average annual production (% of maximum potential)

Pasture production estimates for the 80% efficiency class are on average close to 100%.

Pasture production estimates decrease with decreasing application efficiency, reflecting the impact of drainage through the soil resulting in higher soil moisture deficits.


As stated in Section 3.6.3, these estimates do not consider the impact of water supply restrictions. Consequently, actual product losses due to water stress may be higher than predicted, depending on the reliability of supply. The impact of restrictions will be considered during Part B of the Manuherikia Study.

It is also important to note that the production figures are averages, and variations about these figures will occur on a year-by-year basis.


5 REFERENCES

- Brown, P., McIndoe, I. (2003). "Irrigation requirements for North Otago". Report No. 4461/1. Prepared by Lincoln Environmental for the Otago Regional Council. October 2003.
- Landcare (2000). "New Zealand Land Resource Inventory version 2". GIS spatial data produced by Landcare Research New Zealand Ltd.
- OPUS (2010). "Lower Manuherikia Valley Water Resources Study: Summary document for discussion brief." Report prepared for the Manuherikia Irrigation Co-operative Society Ltd by Opus International Consultants Ltd. August 2010.

Appendix A: Climate

Spatial climate variability

Climate zones

Total monthl	y ET ₀ at Lauder EWS	(Agent 5535)
--------------	---------------------------------	--------------

10			ELOS			WS (A		<u> </u>					
Season	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Year
72-73	14	12	33	88	108	143	160	183	154	111	63	29	1098
73-74	10	11	28	74	109	125	175	181	113	99	41	26	991
74-75	12	17	28	57	88	149	183	155	126	96	52	29	992
75-76	2	15	36	72	108	130	185	176	132	114	57	30	1057
76-77	15	20	28	57	85	127	145	138	136	110	51	22	933
77-78	5	9	30	53	119	136	162	185	152	119	47	26	1044
78-79	6	12	33	52	101	148	159	180	127	79	48	21	967
79-80	8	15	26	66	89	132	139	141	103	74	41	21	857
80-81	7	14	34	63	92	115	165	163	119	84	47	17	919
81-82	9	13	24	63	109	109	135	160	140	96	40	27	924
82-83	7	2	41	60	99	152	145	132	123	97	49	31	938
83-84	13	14	34	61	91	124	141	142	115	74	51	23	884
84-85	27	12	35	61	105	133	141	162	136	100	55	26	993
85-86	14	15	31	71	81	111	131	149	98	86	48	26	862
86-87	18	16	30	56	96	112	152	122	92	68	42	20	823
87-88	16	11	30	52	85	112	115	140	116	94	47	28	847
88-89	8	24	35	64	108	141	147	136	105	94	50	16	926
89-90	10	11	22	54	91	126	151	159	128	86	57	29	923
90-91	10	9	21	61	96	114	168	147	107	89	40	27	889
91-92	9	6	35	51	96	92	136	149	118	104	43	19	857
92-93	10	12	20	39	82	119	125	139	96	73	40	22	777
93-94	22	12	29	53	117	102	118	130	99	66	48	25	822
94-95	8	13	47	50	87	118	152	137	106	91	44	32	886
95-96	13	8	33	53	88	107	143	144	117	78	44	29	857
96-97	11	9	30	76	101	129	166	146	114	94	55	30	959
97-98	10	13	41	52	113	161	177	187	152	107	59	25	1097
98-99	11	13	36	75	104	133	153	183	143	113	49	43	1056
99-00	10	15	35	64	104	95	148	125	133	86	47	30	891
00-01	18	14	31	68	104	123	185	143	115	104	67	20	993
01-02	16	12	29	66	92	107	137	134	114	119	41	40	907
02-03	22	16	35	82	103	122	160	152	133	106	40	36	1007
03-04	33	19	28	64	100	142	193	180	113	96	54	29	1051
04-05	23	15	27	64	98	133	123	152	122	81	49	28	915
05-06	14	23	39	60	99	131	150	178	133	84	54	19	984
06-07	15	27	43	89	123	129	127	142	126	110	50	51	1031
07-08	20	13	36	67	112	133	153	186	127	88	47	16	998
08-09	18	12	26	71	108	146	140	182	106	99	59	20	988
09-10	9	17	44	78	88	169	162	147	140	114	70	26	1062
10-11	11	11	27	78	113	145	172	144	114	88	50	33	985
Average	13	14	32	64	100	128	152	155	121	94	50	27	948

 ET_o was calculated by NIWA using the Penman equations with radiation, temperature, wind and vapour pressure data from Lauder EWS. Highlighted cells were calculated using Aqualinc's climate extension software, using ET_o data from Clyde, Alexandra and Tara Hills climate stations to extend the Lauder record.

Total monthly	Rainfall at	Clvde EWS	(Agent 12431)
i otur monting	ituillull ut		

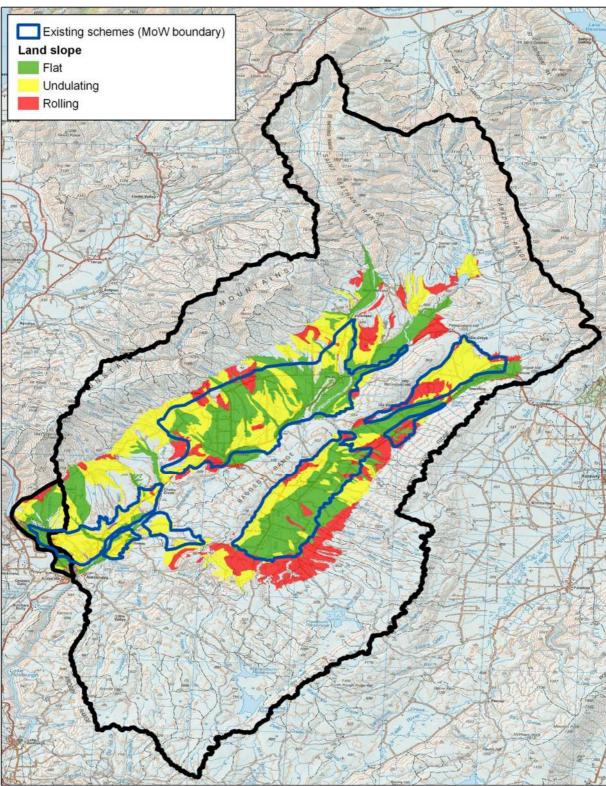
Total monthly Rainfall at Clyde EWS (Agent 12431)													
Season	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Year
72-73	19	22	18	92	31	9	33	6	6	24	75	22	357
73-74	4	15	40	27	40	37	18	13	46	13	34	13	300
74-75	31	46	2	3	100	7	26	32	41	23	55	29	395
75-76	25	37	19	12	35	15	29	13	11	4	17	61	278
76-77	49	32	55	11	54	23	113	23	21	20	29	31	460
77-78	14	10	2	22	28	18	38	17	11	26	27	50	263
78-79	14	23	36	55	116	32	57	31	18	49	33	45	511
79-80	4	25	25	22	34	16	114	67	35	51	61	22	476
80-81	37	24	86	31	22	41	13	11	22	100	20	11	417
81-82	49	32	11	21	26	27	37	39	26	27	13	78	386
82-83	21	11	43	4	39	68	54	58	7	93	85	24	509
83-84	29	26	20	77	55	14	50	75	33	53	14	16	463
84-85	17	50	21	16	12	41	44	21	24	11	9	1	267
85-86	27	19	34	15	12	44	68	19	71	27	27	49	412
86-87	53	29	6	9	19	37	13	39	50	93	7	40	394
87-88	38	21	14	38	39	8	32	64	84	10	21	33	402
88-89	41	32	20	15	62	21	23	72	32	45	13	17	394
89-90	41	7	1	9	33	7	89	33	22	14	39	32	327
90-91	19	41	14	2	61	29	31	25	48	20	39	10	338
91-92	30	21	101	10	16	31	53	9	46	8	46	9	381
92-93	15	53	52	5	37	46	28	37	14	32	18	63	400
93-94	26	10	31	39	35	34	137	132	90	61	32	31	660
94-95	39	53	10	30	1	51	33	22	50	40	11	43	382
95-96	29	17	17	81	76	51	143	85	17	22	85	21	643
96-97	47	5	10	5	46	38	28	32	51	38	72	27	400
97-98	3	24	18	9	22	30	66	22	33	40	21	17	304
98-99	30	24	30	23	45	7	31	19	7	87	55	15	372
99-00	18	43	14	18	15	134	18	96	12	32	51	45	495
00-01	60	15	19	42	43	33	32	53	25	10	12	26	371
01-02	38	7	16	13	28	40	62	81	13	20	39	16	373
02-03	51	9	36	30	22	23	58	52	24	2	24	25	355
03-04	34	39	25	39	37	28	16	56	69	31	14	54	443
04-05	62	12	29	36	58	47	84	44	65	40	27	21	524
05-06	12	8	20	10	35	28	38	29	15	14	19	13	240
06-07	28	13	12	15	32	70	26	23	8	22	11	24	285
07-08	44	36	12	26	56	6	34	32	27	44	35	34	386
08-09	14	22	14	47	22	11	76	11	57	13	41	40	369
09-10	3	25	34	21	29	3	21	53	20	19	41	47	316
10-11	33	8	33	31	21	13	70	41	81	35	12	63	442
Average	30	24	26	26	38	31	50	41	34	34	33	31	397

Highlighted cells were calculated using Aqualinc's climate extension software, using data from NIWA's VCS 15044 to extend the record.

Total monthly Rainfall at Lauder Flats (Agent 5537)

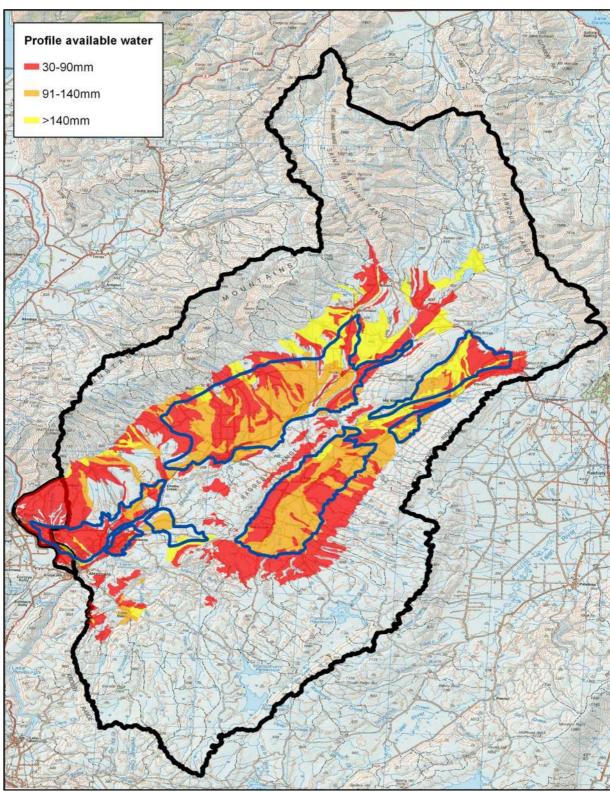
Total monthly Rainfall at Lauder Flats (Agent 5537)													
Season	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Year
72-73	26	26	33	61	65	17	42	18	11	28	96	36	459
73-74	21	36	44	20	40	52	23	20	89	21	37	31	433
74-75	37	55	8	6	99	13	29	73	81	15	74	23	512
75-76	11	35	51	22	46	34	21	10	34	12	13	71	361
76-77	47	37	41	21	60	43	149	49	33	17	56	27	578
77-78	21	16	8	54	24	26	44	23	17	26	41	58	358
78-79	34	36	66	70	97	39	65	6	54	105	33	26	632
79-80	11	21	36	45	79	32	83	87	50	57	41	44	586
80-81	46	27	79	13	50	68	39	9	9	80	31	14	465
81-82	56	54	7	16	37	14	42	36	23	13	47	69	414
82-83	28	10	42	23	69	69	88	80	19	79	123	43	672
83-84	36	41	34	40	94	17	100	71	23	88	23	31	597
84-85	5	58	53	37	8	74	41	50	20	17	7	14	383
85-86	29	17	39	32	49	64	76	66	72	61	25	53	583
86-87	51	31	29	16	42	54	11	37	94	122	32	45	563
87-88	23	47	12	36	49	28	59	72	65	6	42	35	473
88-89	56	37	22	10	40	43	25	118	114	43	17	32	556
89-90	55	5	0	7	54	16	105	57	49	36	30	37	452
90-91	23	26	15	12	99	26	15	27	62	19	55	17	395
91-92	45	16	44	21	18	41	91	12	38	0	46	8	381
92-93	17	43	45	31	64	52	48	62	30	34	42	79	546
93-94	13	5	33	64	36	37	133	148	72	89	31	36	698
94-95	47	39	13	33	5	63	25	40	91	42	6	44	446
95-96	56	41	14	102	94	78	133	70	19	40	85	16	748
96-97	45	8	14	7	41	55	62	51	49	38	86	26	481
97-98	9	38	23	11	37	35	96	17	34	51	29	30	410
98-99	51	23	28	36	57	30	22	17	22	83	67	21	455
99-00	35	64	12	22	22	127	45	177	27	29	63	62	684
00-01	42	11	40	60	32	63	41	67	45	10	20	33	465
01-02	55	21	30	13	47	51	76	73	29	10	68	21	492
02-03	88	15	30	39	41	49	47	69	33	3	35	23	470
03-04	29	49	20	21	47	25	12	64	42	24	20	44	397
04-05	39	9	41	26	71	95	140	61	69	64	27	30	673
05-06	21	12	21	22	48	55	93	50	45	30	102	60	559
06-07	49	14	12	11	61	126	89	26	8	23	30	20	468
07-08	53	44	10	34	47	14	96	48	58	46	39	59	546
08-09	41	43	20	68	26	35	113	19	68	11	36	59	538
09-10	3	13	21	10	61	1	24	117	32	17	53	78	428
10-11	70	12	67	29	32	31	78	60	124	63	32	80	677
Average	36	29	30	31	51	46	65	55	47	40	45	39	514

10		muniy	Kalli	an at	Black	stone	HIII (Agent	5252)				
Season	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Year
72-73	69	33	27	71	69	36	40	16	16	36	114	38	564
73-74	16	5	127	33	65	68	40	28	76	58	74	38	627
74-75	37	79	15	11	67	11	31	45	83	37	77	20	512
75-76	35	43	70	18	28	47	55	20	44	22	8	91	481
76-77	59	37	58	19	73	36	196	27	49	14	57	61	683
77-78	14	22	8	57	26	36	72	29	29	29	67	71	460
78-79	43	66	84	91	69	38	128	22	36	113	34	67	790
79-80	11	41	57	55	92	31	87	107	72	57	44	20	672
80-81	54	39	79	16	54	89	42	14	25	109	41	19	580
81-82	42	94	40	34	45	28	42	60	32	21	77	69	583
82-83	33	12	50	38	119	73	72	87	27	70	110	66	756
83-84	47	58	50	52	91	17	123	122	34	113	32	45	784
84-85	6	58	31	63	14	67	49	47	37	29	24	39	463
85-86	23	31	46	35	39	53	45	48	92	69	21	58	559
86-87	46	58	45	14	34	81	18	71	109	187	13	69	746
87-88	15	53	12	38	82	33	78	79	63	23	45	35	556
88-89	43	7	41	13	48	53	38	135	65	53	14	42	552
89-90	46	9	1	18	83	22	103	78	52	34	34	53	532
90-91	22	59	28	31	90	34	19	33	67	33	61	27	503
91-92	64	31	60	37	37	40	107	11	37	4	40	40	508
92-93	27	48	69	72	65	82	88	74	34	61	63	83	766
93-94	17	13	44	86	37	41	180	182	56	142	37	28	864
94-95	57	60	40	63	10	52	27	50	97	59	17	52	586
95-96	64	52	17	107	154	76	126	79	33	64	93	30	896
96-97	57	26	15	10	63	84	85	108	51	44	98	27	668
97-98	15	32	41	32	44	32	75	12	45	46	20	29	421
98-99	47	28	27	33	79	55	36	17	28	80	71	24	524
99-00	31	38	8	30	20	87	56	174	28	33	58	70	633
00-01	50	21	60	65	26	39	50	65	35	8	14	39	470
01-02	62	61	52	16	49	54	58	107	38	21	59	30	607
02-03	84	24	34	48	32	61	35	52	48	2	44	28	491
03-04	33	44	19	42	69	33	14	71	65	43	35	45	510
04-05	44	18	53	34	51	91	168	47	49	73	25	35	688
05-06	32	13	25	21	52	51	117	58	32	20	88	98	606
06-07	78	32	49	39	76	117	143	37	14	34	35	12	664
07-08	58	62	14	68	61	25	105	51	85	57	50	60	696
08-09	30	70	13	92	35	25	127	23	87	10	41	110	662
09-10	0	15	21	4	59	0	38	64	30	20	59	115	424
10-11	54	15	105	35	35	26	114	42	127	63	25	104	746
Average	40	39	42	42	57	49	78	61	52	51	49	51	611

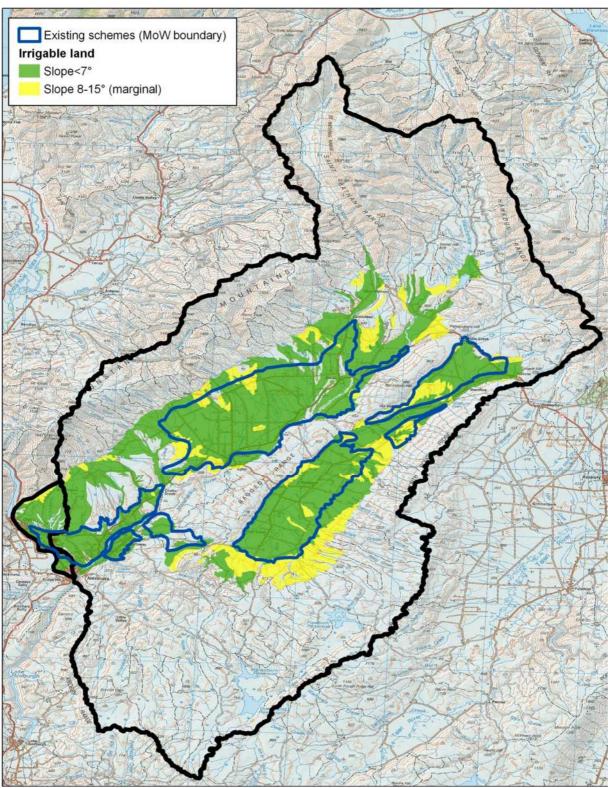

Highlighted cells were calculated using Aqualinc's climate extension software, using data from NIWA's VCS 13806 to extend the record.

Total monthly Rainfall at Cambrians (Agent 5248)

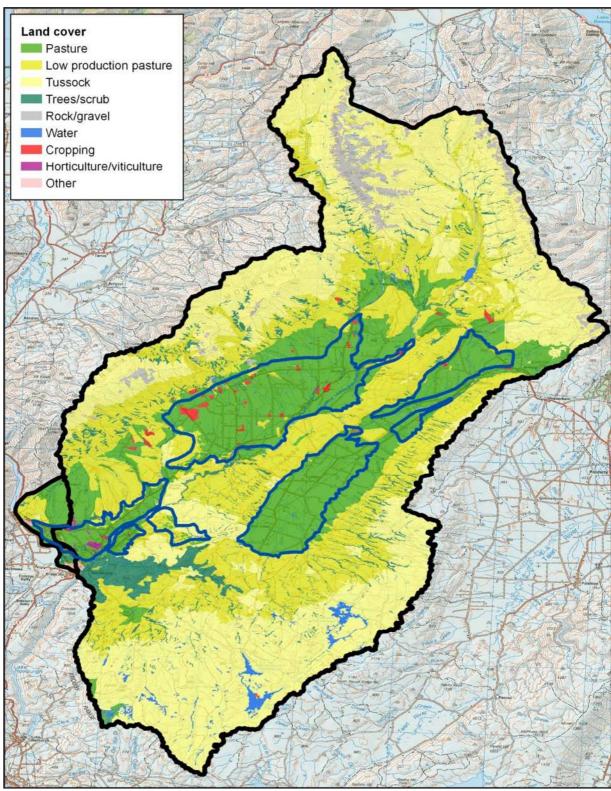
Total monthly Rainfall at Cambrians (Agent 5248)													
Season	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Year
72-73	30	41	47	90	70	41	76	28	29	43	151	58	704
73-74	33	60	82	33	57	77	31	24	117	29	54	50	648
74-75	58	93	15	10	140	19	39	85	107	21	108	37	733
75-76	18	59	96	37	66	50	28	12	44	17	18	115	561
76-77	73	62	77	34	85	64	203	57	44	24	82	43	847
77-78	33	27	15	88	35	38	59	27	23	36	61	93	535
78-79	53	61	125	114	138	58	88	7	72	148	49	43	955
79-80	18	35	67	74	112	48	113	102	66	81	61	71	846
80-81	72	45	149	21	71	101	53	11	12	113	46	23	715
81-82	88	92	12	26	52	20	57	43	31	19	69	111	619
82-83	44	18	78	37	98	102	119	93	25	111	181	70	977
83-84	56	70	64	66	133	25	135	83	30	125	34	49	870
84-85	8	98	99	61	11	109	56	58	26	24	11	23	583
85-86	46	29	74	52	69	95	102	77	96	86	37	85	849
86-87	80	52	54	26	59	80	15	43	124	173	47	73	826
87-88	35	80	23	59	69	42	80	84	86	8	61	57	684
88-89	88	62	41	16	57	64	33	138	151	61	26	52	788
89-90	85	9	0	11	77	23	143	67	65	51	44	60	636
90-91	35	44	29	20	140	38	20	32	82	26	80	27	575
91-92	71	28	84	34	26	60	123	14	50	0	67	14	571
92-93	26	72	84	51	90	77	65	73	39	48	62	128	816
93-94	20	9	62	105	52	55	180	173	96	126	45	59	982
94-95	74	65	24	54	7	92	34	47	120	59	9	70	656
95-96	88	70	27	167	133	116	181	82	25	57	124	26	1094
96-97	70	13	26	11	59	81	84	60	65	54	126	42	690
97-98	14	64	43	18	52	51	130	20	45	72	43	49	602
98-99	79	39	53	59	80	44	30	19	28	117	98	34	682
99-00	55	107	22	36	31	187	62	207	36	41	92	100	976
00-01	65	19	76	98	46	93	55	79	60	14	29	54	688
01-02	86	35	57	20	66	75	102	85	38	14	100	33	713
02-03	137	25	56	64	58	72	64	81	44	4	51	37	692
03-04	45	82	38	35	67	36	17	75	56	34	29	71	585
04-05	61	16	78	42	101	141	189	72	91	91	39	49	970
05-06	33	21	40	36	68	82	126	58	59	43	149	97	812
06-07	76	23	22	17	87	187	121	30	10	32	44	32	683
07-08	82	74	19	56	67	21	130	56	77	65	56	95	798
08-09	64	72	37	111	37	52	153	22	90	16	53	96	803
09-10	5	22	39	16	86	1	32	137	42	24	78	125	607
10-11	109	20	126	48	46	46	105	70	164	89	47	129	999
Average	57	49	55	50	72	68	88	65	63	56	66	64	753


Highlighted cells were calculated using Aqualinc's climate extension software, using data from Lauder Flat (agent 5537) to extend the Cambrians record. The period of overlap between the two records was 27 years, with both records extending back to at least 1944.

Appendix B: Land slope


Flat to rolling land below an elevation of 600 m

Appendix C: Soils


Soil profile available water (0-90cm) for flat to rolling land below an elevation of 600 m

Appendix D: Irrigable land

Potentially irrigable land (slope < 15°, elevation less than 600m, & excluding isolated areas)

Appendix E: Existing land cover

Land cover from the Land Cover Database version 2 (Landcare 2004)